Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-2reu | |- ( E! x e. A , y e. B ph <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | cA | |- A |
|
2 | vy | |- y |
|
3 | cB | |- B |
|
4 | wph | |- ph |
|
5 | 4 0 2 1 3 | w2reu | |- E! x e. A , y e. B ph |
6 | 4 2 3 | wrex | |- E. y e. B ph |
7 | 6 0 1 | wreu | |- E! x e. A E. y e. B ph |
8 | 4 0 1 | wrex | |- E. x e. A ph |
9 | 8 2 3 | wreu | |- E! y e. B E. x e. A ph |
10 | 7 9 | wa | |- ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) |
11 | 5 10 | wb | |- ( E! x e. A , y e. B ph <-> ( E! x e. A E. y e. B ph /\ E! y e. B E. x e. A ph ) ) |