Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-2reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | ⊢ 𝑥 | |
1 | cA | ⊢ 𝐴 | |
2 | vy | ⊢ 𝑦 | |
3 | cB | ⊢ 𝐵 | |
4 | wph | ⊢ 𝜑 | |
5 | 4 0 2 1 3 | w2reu | ⊢ ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 |
6 | 4 2 3 | wrex | ⊢ ∃ 𝑦 ∈ 𝐵 𝜑 |
7 | 6 0 1 | wreu | ⊢ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 |
8 | 4 0 1 | wrex | ⊢ ∃ 𝑥 ∈ 𝐴 𝜑 |
9 | 8 2 3 | wreu | ⊢ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 |
10 | 7 9 | wa | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |
11 | 5 10 | wb | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |