Metamath Proof Explorer


Definition df-2reu

Description: Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Assertion df-2reu ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 vy 𝑦
3 cB 𝐵
4 wph 𝜑
5 4 0 2 1 3 w2reu ∃! 𝑥𝐴 , 𝑦𝐵 𝜑
6 4 2 3 wrex 𝑦𝐵 𝜑
7 6 0 1 wreu ∃! 𝑥𝐴𝑦𝐵 𝜑
8 4 0 1 wrex 𝑥𝐴 𝜑
9 8 2 3 wreu ∃! 𝑦𝐵𝑥𝐴 𝜑
10 7 9 wa ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 )
11 5 10 wb ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )