Metamath Proof Explorer


Theorem 2reucom

Description: Double restricted existential uniqueness commutes. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Assertion 2reucom ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ∃! 𝑦𝐵 , 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ancom ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )
2 df-2reu ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )
3 df-2reu ( ∃! 𝑦𝐵 , 𝑥𝐴 𝜑 ↔ ( ∃! 𝑦𝐵𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )
4 1 2 3 3bitr4i ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ∃! 𝑦𝐵 , 𝑥𝐴 𝜑 )