Metamath Proof Explorer


Theorem 2reu2rex1

Description: Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Assertion 2reu2rex1 ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 df-2reu ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) )
2 1 simplbi ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 → ∃! 𝑥𝐴𝑦𝐵 𝜑 )
3 reurex ( ∃! 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜑 )
4 2 3 syl ( ∃! 𝑥𝐴 , 𝑦𝐵 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜑 )