Description: Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2reu2rex1 | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
2 | 1 | simplbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 → ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
3 | reurex | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
4 | 2 3 | syl | ⊢ ( ∃! 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |