Metamath Proof Explorer


Theorem 2reu2rex1

Description: Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023)

Ref Expression
Assertion 2reu2rex1 ∃! x A, y B φ x A y B φ

Proof

Step Hyp Ref Expression
1 df-2reu ∃! x A, y B φ ∃! x A y B φ ∃! y B x A φ
2 1 simplbi ∃! x A, y B φ ∃! x A y B φ
3 reurex ∃! x A y B φ x A y B φ
4 2 3 syl ∃! x A, y B φ x A y B φ