Metamath Proof Explorer


Definition df-abss

Description: Define the surreal absolute value function. See abssval for its value and absscl for its closure. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion df-abss
|- abs_s = ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cabss
 |-  abs_s
1 vx
 |-  x
2 csur
 |-  No
3 c0s
 |-  0s
4 csle
 |-  <_s
5 1 cv
 |-  x
6 3 5 4 wbr
 |-  0s <_s x
7 cnegs
 |-  -us
8 5 7 cfv
 |-  ( -us ` x )
9 6 5 8 cif
 |-  if ( 0s <_s x , x , ( -us ` x ) )
10 1 2 9 cmpt
 |-  ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) )
11 0 10 wceq
 |-  abs_s = ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) )