Description: Define the surreal absolute value function. See abssval for its value and absscl for its closure. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-abss | |- abs_s = ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cabss | |- abs_s |
|
| 1 | vx | |- x |
|
| 2 | csur | |- No |
|
| 3 | c0s | |- 0s |
|
| 4 | csle | |- <_s |
|
| 5 | 1 | cv | |- x |
| 6 | 3 5 4 | wbr | |- 0s <_s x |
| 7 | cnegs | |- -us |
|
| 8 | 5 7 | cfv | |- ( -us ` x ) |
| 9 | 6 5 8 | cif | |- if ( 0s <_s x , x , ( -us ` x ) ) |
| 10 | 1 2 9 | cmpt | |- ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) ) |
| 11 | 0 10 | wceq | |- abs_s = ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) ) |