Description: Define the surreal absolute value function. See abssval for its value and absscl for its closure. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-abss | |- abs_s = ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cabss | |- abs_s | |
| 1 | vx | |- x | |
| 2 | csur | |- No | |
| 3 | c0s | |- 0s | |
| 4 | csle | |- <_s | |
| 5 | 1 | cv | |- x | 
| 6 | 3 5 4 | wbr | |- 0s <_s x | 
| 7 | cnegs | |- -us | |
| 8 | 5 7 | cfv | |- ( -us ` x ) | 
| 9 | 6 5 8 | cif | |- if ( 0s <_s x , x , ( -us ` x ) ) | 
| 10 | 1 2 9 | cmpt | |- ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) ) | 
| 11 | 0 10 | wceq | |- abs_s = ( x e. No |-> if ( 0s <_s x , x , ( -us ` x ) ) ) |