Metamath Proof Explorer


Definition df-abss

Description: Define the surreal absolute value function. See abssval for its value and absscl for its closure. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion df-abss abss = ( 𝑥 No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cabss abss
1 vx 𝑥
2 csur No
3 c0s 0s
4 csle ≤s
5 1 cv 𝑥
6 3 5 4 wbr 0s ≤s 𝑥
7 cnegs -us
8 5 7 cfv ( -us𝑥 )
9 6 5 8 cif if ( 0s ≤s 𝑥 , 𝑥 , ( -us𝑥 ) )
10 1 2 9 cmpt ( 𝑥 No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us𝑥 ) ) )
11 0 10 wceq abss = ( 𝑥 No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us𝑥 ) ) )