Description: Define the surreal absolute value function. See abssval for its value and absscl for its closure. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-abss | ⊢ abss = ( 𝑥 ∈ No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us ‘ 𝑥 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cabss | ⊢ abss | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | csur | ⊢ No | |
| 3 | c0s | ⊢ 0s | |
| 4 | csle | ⊢ ≤s | |
| 5 | 1 | cv | ⊢ 𝑥 | 
| 6 | 3 5 4 | wbr | ⊢ 0s ≤s 𝑥 | 
| 7 | cnegs | ⊢ -us | |
| 8 | 5 7 | cfv | ⊢ ( -us ‘ 𝑥 ) | 
| 9 | 6 5 8 | cif | ⊢ if ( 0s ≤s 𝑥 , 𝑥 , ( -us ‘ 𝑥 ) ) | 
| 10 | 1 2 9 | cmpt | ⊢ ( 𝑥 ∈ No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us ‘ 𝑥 ) ) ) | 
| 11 | 0 10 | wceq | ⊢ abss = ( 𝑥 ∈ No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us ‘ 𝑥 ) ) ) |