Metamath Proof Explorer


Theorem abssval

Description: The value of surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssval ( 𝐴 No → ( abss𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 df-abss abss = ( 𝑥 No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us𝑥 ) ) )
2 breq2 ( 𝑥 = 𝐴 → ( 0s ≤s 𝑥 ↔ 0s ≤s 𝐴 ) )
3 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
4 fveq2 ( 𝑥 = 𝐴 → ( -us𝑥 ) = ( -us𝐴 ) )
5 2 3 4 ifbieq12d ( 𝑥 = 𝐴 → if ( 0s ≤s 𝑥 , 𝑥 , ( -us𝑥 ) ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) )
6 id ( 𝐴 No 𝐴 No )
7 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
8 6 7 ifcld ( 𝐴 No → if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) ∈ No )
9 1 5 6 8 fvmptd3 ( 𝐴 No → ( abss𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) )