| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-abss | ⊢ abss  =  ( 𝑥  ∈   No   ↦  if (  0s   ≤s  𝑥 ,  𝑥 ,  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 2 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  (  0s   ≤s  𝑥  ↔   0s   ≤s  𝐴 ) ) | 
						
							| 3 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝐴 ) ) | 
						
							| 5 | 2 3 4 | ifbieq12d | ⊢ ( 𝑥  =  𝐴  →  if (  0s   ≤s  𝑥 ,  𝑥 ,  (  -us  ‘ 𝑥 ) )  =  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝐴  ∈   No   →  𝐴  ∈   No  ) | 
						
							| 7 |  | negscl | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 8 | 6 7 | ifcld | ⊢ ( 𝐴  ∈   No   →  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) )  ∈   No  ) | 
						
							| 9 | 1 5 6 8 | fvmptd3 | ⊢ ( 𝐴  ∈   No   →  ( abss ‘ 𝐴 )  =  if (  0s   ≤s  𝐴 ,  𝐴 ,  (  -us  ‘ 𝐴 ) ) ) |