Step |
Hyp |
Ref |
Expression |
1 |
|
df-abss |
⊢ abss = ( 𝑥 ∈ No ↦ if ( 0s ≤s 𝑥 , 𝑥 , ( -us ‘ 𝑥 ) ) ) |
2 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 0s ≤s 𝑥 ↔ 0s ≤s 𝐴 ) ) |
3 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( -us ‘ 𝑥 ) = ( -us ‘ 𝐴 ) ) |
5 |
2 3 4
|
ifbieq12d |
⊢ ( 𝑥 = 𝐴 → if ( 0s ≤s 𝑥 , 𝑥 , ( -us ‘ 𝑥 ) ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ) |
6 |
|
id |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) |
7 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
8 |
6 7
|
ifcld |
⊢ ( 𝐴 ∈ No → if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ∈ No ) |
9 |
1 5 6 8
|
fvmptd3 |
⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ) |