Metamath Proof Explorer


Theorem absscl

Description: Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion absscl ( 𝐴 No → ( abss𝐴 ) ∈ No )

Proof

Step Hyp Ref Expression
1 abssval ( 𝐴 No → ( abss𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) )
2 id ( 𝐴 No 𝐴 No )
3 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
4 2 3 ifcld ( 𝐴 No → if ( 0s ≤s 𝐴 , 𝐴 , ( -us𝐴 ) ) ∈ No )
5 1 4 eqeltrd ( 𝐴 No → ( abss𝐴 ) ∈ No )