Description: Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absscl | ⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) ∈ No ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abssval | ⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ) | |
| 2 | id | ⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) | |
| 3 | negscl | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) | |
| 4 | 2 3 | ifcld | ⊢ ( 𝐴 ∈ No → if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ∈ No ) | 
| 5 | 1 4 | eqeltrd | ⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) ∈ No ) |