Description: Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | absscl | ⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssval | ⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) = if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ) | |
2 | id | ⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) | |
3 | negscl | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) | |
4 | 2 3 | ifcld | ⊢ ( 𝐴 ∈ No → if ( 0s ≤s 𝐴 , 𝐴 , ( -us ‘ 𝐴 ) ) ∈ No ) |
5 | 1 4 | eqeltrd | ⊢ ( 𝐴 ∈ No → ( abss ‘ 𝐴 ) ∈ No ) |