Metamath Proof Explorer


Theorem absscl

Description: Closure law for surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion absscl A No abs s A No

Proof

Step Hyp Ref Expression
1 abssval A No abs s A = if 0 s s A A + s A
2 id A No A No
3 negscl A No + s A No
4 2 3 ifcld A No if 0 s s A A + s A No
5 1 4 eqeltrd A No abs s A No