Metamath Proof Explorer


Theorem abssval

Description: The value of surreal absolute value. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssval A No abs s A = if 0 s s A A + s A

Proof

Step Hyp Ref Expression
1 df-abss abs s = x No if 0 s s x x + s x
2 breq2 x = A 0 s s x 0 s s A
3 id x = A x = A
4 fveq2 x = A + s x = + s A
5 2 3 4 ifbieq12d x = A if 0 s s x x + s x = if 0 s s A A + s A
6 id A No A No
7 negscl A No + s A No
8 6 7 ifcld A No if 0 s s A A + s A No
9 1 5 6 8 fvmptd3 A No abs s A = if 0 s s A A + s A