Step |
Hyp |
Ref |
Expression |
0 |
|
cacycgr |
|- AcyclicGraph |
1 |
|
vg |
|- g |
2 |
|
vf |
|- f |
3 |
|
vp |
|- p |
4 |
2
|
cv |
|- f |
5 |
|
ccycls |
|- Cycles |
6 |
1
|
cv |
|- g |
7 |
6 5
|
cfv |
|- ( Cycles ` g ) |
8 |
3
|
cv |
|- p |
9 |
4 8 7
|
wbr |
|- f ( Cycles ` g ) p |
10 |
|
c0 |
|- (/) |
11 |
4 10
|
wne |
|- f =/= (/) |
12 |
9 11
|
wa |
|- ( f ( Cycles ` g ) p /\ f =/= (/) ) |
13 |
12 3
|
wex |
|- E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) |
14 |
13 2
|
wex |
|- E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) |
15 |
14
|
wn |
|- -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) |
16 |
15 1
|
cab |
|- { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } |
17 |
0 16
|
wceq |
|- AcyclicGraph = { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } |