| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cacycgr |  |-  AcyclicGraph | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | vf |  |-  f | 
						
							| 3 |  | vp |  |-  p | 
						
							| 4 | 2 | cv |  |-  f | 
						
							| 5 |  | ccycls |  |-  Cycles | 
						
							| 6 | 1 | cv |  |-  g | 
						
							| 7 | 6 5 | cfv |  |-  ( Cycles ` g ) | 
						
							| 8 | 3 | cv |  |-  p | 
						
							| 9 | 4 8 7 | wbr |  |-  f ( Cycles ` g ) p | 
						
							| 10 |  | c0 |  |-  (/) | 
						
							| 11 | 4 10 | wne |  |-  f =/= (/) | 
						
							| 12 | 9 11 | wa |  |-  ( f ( Cycles ` g ) p /\ f =/= (/) ) | 
						
							| 13 | 12 3 | wex |  |-  E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) | 
						
							| 14 | 13 2 | wex |  |-  E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) | 
						
							| 15 | 14 | wn |  |-  -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) | 
						
							| 16 | 15 1 | cab |  |-  { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } | 
						
							| 17 | 0 16 | wceq |  |-  AcyclicGraph = { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } |