Metamath Proof Explorer


Theorem dfacycgr1

Description: An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023)

Ref Expression
Assertion dfacycgr1
|- AcyclicGraph = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) }

Proof

Step Hyp Ref Expression
1 df-acycgr
 |-  AcyclicGraph = { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) }
2 2exanali
 |-  ( -. E. f E. p ( f ( Cycles ` g ) p /\ -. f = (/) ) <-> A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) )
3 df-ne
 |-  ( f =/= (/) <-> -. f = (/) )
4 3 anbi2i
 |-  ( ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> ( f ( Cycles ` g ) p /\ -. f = (/) ) )
5 4 2exbii
 |-  ( E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> E. f E. p ( f ( Cycles ` g ) p /\ -. f = (/) ) )
6 2 5 xchnxbir
 |-  ( -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) )
7 6 abbii
 |-  { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) }
8 1 7 eqtri
 |-  AcyclicGraph = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) }