| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-acycgr |
|- AcyclicGraph = { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } |
| 2 |
|
2exanali |
|- ( -. E. f E. p ( f ( Cycles ` g ) p /\ -. f = (/) ) <-> A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) ) |
| 3 |
|
df-ne |
|- ( f =/= (/) <-> -. f = (/) ) |
| 4 |
3
|
anbi2i |
|- ( ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> ( f ( Cycles ` g ) p /\ -. f = (/) ) ) |
| 5 |
4
|
2exbii |
|- ( E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> E. f E. p ( f ( Cycles ` g ) p /\ -. f = (/) ) ) |
| 6 |
2 5
|
xchnxbir |
|- ( -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) ) |
| 7 |
6
|
abbii |
|- { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) } |
| 8 |
1 7
|
eqtri |
|- AcyclicGraph = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) } |