Metamath Proof Explorer


Theorem isacycgr

Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023)

Ref Expression
Assertion isacycgr
|- ( G e. W -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( g = G -> ( Cycles ` g ) = ( Cycles ` G ) )
2 1 breqd
 |-  ( g = G -> ( f ( Cycles ` g ) p <-> f ( Cycles ` G ) p ) )
3 2 anbi1d
 |-  ( g = G -> ( ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) )
4 3 2exbidv
 |-  ( g = G -> ( E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) )
5 4 notbid
 |-  ( g = G -> ( -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) )
6 df-acycgr
 |-  AcyclicGraph = { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) }
7 5 6 elab2g
 |-  ( G e. W -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) )