| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( g = G -> ( Cycles ` g ) = ( Cycles ` G ) ) |
| 2 |
1
|
breqd |
|- ( g = G -> ( f ( Cycles ` g ) p <-> f ( Cycles ` G ) p ) ) |
| 3 |
2
|
anbi1d |
|- ( g = G -> ( ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 4 |
3
|
2exbidv |
|- ( g = G -> ( E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 5 |
4
|
notbid |
|- ( g = G -> ( -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 6 |
|
df-acycgr |
|- AcyclicGraph = { g | -. E. f E. p ( f ( Cycles ` g ) p /\ f =/= (/) ) } |
| 7 |
5 6
|
elab2g |
|- ( G e. W -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |