Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BTernaryTau
Graph theory
Acyclic graphs
isacycgr
Next ⟩
isacycgr1
Metamath Proof Explorer
Ascii
Unicode
Theorem
isacycgr
Description:
The property of being an acyclic graph.
(Contributed by
BTernaryTau
, 11-Oct-2023)
Ref
Expression
Assertion
isacycgr
⊢
G
∈
W
→
G
∈
AcyclicGraph
↔
¬
∃
f
∃
p
f
Cycles
⁡
G
p
∧
f
≠
∅
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
g
=
G
→
Cycles
⁡
g
=
Cycles
⁡
G
2
1
breqd
⊢
g
=
G
→
f
Cycles
⁡
g
p
↔
f
Cycles
⁡
G
p
3
2
anbi1d
⊢
g
=
G
→
f
Cycles
⁡
g
p
∧
f
≠
∅
↔
f
Cycles
⁡
G
p
∧
f
≠
∅
4
3
2exbidv
⊢
g
=
G
→
∃
f
∃
p
f
Cycles
⁡
g
p
∧
f
≠
∅
↔
∃
f
∃
p
f
Cycles
⁡
G
p
∧
f
≠
∅
5
4
notbid
⊢
g
=
G
→
¬
∃
f
∃
p
f
Cycles
⁡
g
p
∧
f
≠
∅
↔
¬
∃
f
∃
p
f
Cycles
⁡
G
p
∧
f
≠
∅
6
df-acycgr
⊢
AcyclicGraph
=
g
|
¬
∃
f
∃
p
f
Cycles
⁡
g
p
∧
f
≠
∅
7
5
6
elab2g
⊢
G
∈
W
→
G
∈
AcyclicGraph
↔
¬
∃
f
∃
p
f
Cycles
⁡
G
p
∧
f
≠
∅