| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Cycles ‘ 𝑔 ) = ( Cycles ‘ 𝐺 ) ) |
| 2 |
1
|
breqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝 ↔ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) ) |
| 3 |
2
|
anbi1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ↔ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
| 4 |
3
|
2exbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ↔ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
| 5 |
4
|
notbid |
⊢ ( 𝑔 = 𝐺 → ( ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
| 6 |
|
df-acycgr |
⊢ AcyclicGraph = { 𝑔 ∣ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝 ∧ 𝑓 ≠ ∅ ) } |
| 7 |
5 6
|
elab2g |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |