Metamath Proof Explorer


Theorem isacycgr

Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023)

Ref Expression
Assertion isacycgr ( 𝐺𝑊 → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑔 = 𝐺 → ( Cycles ‘ 𝑔 ) = ( Cycles ‘ 𝐺 ) )
2 1 breqd ( 𝑔 = 𝐺 → ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) )
3 2 anbi1d ( 𝑔 = 𝐺 → ( ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝𝑓 ≠ ∅ ) ↔ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
4 3 2exbidv ( 𝑔 = 𝐺 → ( ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝𝑓 ≠ ∅ ) ↔ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
5 4 notbid ( 𝑔 = 𝐺 → ( ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝𝑓 ≠ ∅ ) ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )
6 df-acycgr AcyclicGraph = { 𝑔 ∣ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝑔 ) 𝑝𝑓 ≠ ∅ ) }
7 5 6 elab2g ( 𝐺𝑊 → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ≠ ∅ ) ) )