Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( g = G -> ( Cycles ` g ) = ( Cycles ` G ) ) |
2 |
1
|
breqd |
|- ( g = G -> ( f ( Cycles ` g ) p <-> f ( Cycles ` G ) p ) ) |
3 |
2
|
imbi1d |
|- ( g = G -> ( ( f ( Cycles ` g ) p -> f = (/) ) <-> ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
4 |
3
|
2albidv |
|- ( g = G -> ( A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
5 |
|
dfacycgr1 |
|- AcyclicGraph = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) } |
6 |
4 5
|
elab2g |
|- ( G e. W -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |