Metamath Proof Explorer


Theorem isacycgr1

Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023)

Ref Expression
Assertion isacycgr1
|- ( G e. W -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( g = G -> ( Cycles ` g ) = ( Cycles ` G ) )
2 1 breqd
 |-  ( g = G -> ( f ( Cycles ` g ) p <-> f ( Cycles ` G ) p ) )
3 2 imbi1d
 |-  ( g = G -> ( ( f ( Cycles ` g ) p -> f = (/) ) <-> ( f ( Cycles ` G ) p -> f = (/) ) ) )
4 3 2albidv
 |-  ( g = G -> ( A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) )
5 dfacycgr1
 |-  AcyclicGraph = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) }
6 4 5 elab2g
 |-  ( G e. W -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) )