| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( g = G -> ( Cycles ` g ) = ( Cycles ` G ) ) | 
						
							| 2 | 1 | breqd |  |-  ( g = G -> ( f ( Cycles ` g ) p <-> f ( Cycles ` G ) p ) ) | 
						
							| 3 | 2 | imbi1d |  |-  ( g = G -> ( ( f ( Cycles ` g ) p -> f = (/) ) <-> ( f ( Cycles ` G ) p -> f = (/) ) ) ) | 
						
							| 4 | 3 | 2albidv |  |-  ( g = G -> ( A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) | 
						
							| 5 |  | dfacycgr1 |  |-  AcyclicGraph = { g | A. f A. p ( f ( Cycles ` g ) p -> f = (/) ) } | 
						
							| 6 | 4 5 | elab2g |  |-  ( G e. W -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |