Step |
Hyp |
Ref |
Expression |
1 |
|
cycliswlk |
|- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
2 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
3 |
1 2
|
syl |
|- ( F ( Cycles ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
4 |
3
|
simp2d |
|- ( F ( Cycles ` G ) P -> F e. _V ) |
5 |
4
|
adantl |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> F e. _V ) |
6 |
3
|
simp3d |
|- ( F ( Cycles ` G ) P -> P e. _V ) |
7 |
6
|
adantl |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> P e. _V ) |
8 |
|
breq1 |
|- ( f = F -> ( f ( Cycles ` G ) p <-> F ( Cycles ` G ) p ) ) |
9 |
|
eqeq1 |
|- ( f = F -> ( f = (/) <-> F = (/) ) ) |
10 |
8 9
|
imbi12d |
|- ( f = F -> ( ( f ( Cycles ` G ) p -> f = (/) ) <-> ( F ( Cycles ` G ) p -> F = (/) ) ) ) |
11 |
|
breq2 |
|- ( p = P -> ( F ( Cycles ` G ) p <-> F ( Cycles ` G ) P ) ) |
12 |
11
|
imbi1d |
|- ( p = P -> ( ( F ( Cycles ` G ) p -> F = (/) ) <-> ( F ( Cycles ` G ) P -> F = (/) ) ) ) |
13 |
10 12
|
sylan9bb |
|- ( ( f = F /\ p = P ) -> ( ( f ( Cycles ` G ) p -> f = (/) ) <-> ( F ( Cycles ` G ) P -> F = (/) ) ) ) |
14 |
|
isacycgr1 |
|- ( G e. AcyclicGraph -> ( G e. AcyclicGraph <-> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) ) |
15 |
14
|
ibi |
|- ( G e. AcyclicGraph -> A. f A. p ( f ( Cycles ` G ) p -> f = (/) ) ) |
16 |
15
|
19.21bbi |
|- ( G e. AcyclicGraph -> ( f ( Cycles ` G ) p -> f = (/) ) ) |
17 |
16
|
adantr |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> ( f ( Cycles ` G ) p -> f = (/) ) ) |
18 |
5 7 13 17
|
vtocl2d |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> ( F ( Cycles ` G ) P -> F = (/) ) ) |
19 |
18
|
ex |
|- ( G e. AcyclicGraph -> ( F ( Cycles ` G ) P -> ( F ( Cycles ` G ) P -> F = (/) ) ) ) |
20 |
19
|
pm2.43d |
|- ( G e. AcyclicGraph -> ( F ( Cycles ` G ) P -> F = (/) ) ) |
21 |
20
|
imp |
|- ( ( G e. AcyclicGraph /\ F ( Cycles ` G ) P ) -> F = (/) ) |