Step |
Hyp |
Ref |
Expression |
1 |
|
acycgr0v.1 |
|- V = ( Vtx ` G ) |
2 |
|
br0 |
|- -. f (/) p |
3 |
|
df-cycls |
|- Cycles = ( g e. _V |-> { <. f , p >. | ( f ( Paths ` g ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
4 |
3
|
relmptopab |
|- Rel ( Cycles ` G ) |
5 |
|
cycliswlk |
|- ( f ( Cycles ` G ) p -> f ( Walks ` G ) p ) |
6 |
|
df-br |
|- ( f ( Cycles ` G ) p <-> <. f , p >. e. ( Cycles ` G ) ) |
7 |
|
df-br |
|- ( f ( Walks ` G ) p <-> <. f , p >. e. ( Walks ` G ) ) |
8 |
5 6 7
|
3imtr3i |
|- ( <. f , p >. e. ( Cycles ` G ) -> <. f , p >. e. ( Walks ` G ) ) |
9 |
4 8
|
relssi |
|- ( Cycles ` G ) C_ ( Walks ` G ) |
10 |
1
|
eqeq1i |
|- ( V = (/) <-> ( Vtx ` G ) = (/) ) |
11 |
|
g0wlk0 |
|- ( ( Vtx ` G ) = (/) -> ( Walks ` G ) = (/) ) |
12 |
10 11
|
sylbi |
|- ( V = (/) -> ( Walks ` G ) = (/) ) |
13 |
9 12
|
sseqtrid |
|- ( V = (/) -> ( Cycles ` G ) C_ (/) ) |
14 |
|
ss0 |
|- ( ( Cycles ` G ) C_ (/) -> ( Cycles ` G ) = (/) ) |
15 |
|
breq |
|- ( ( Cycles ` G ) = (/) -> ( f ( Cycles ` G ) p <-> f (/) p ) ) |
16 |
15
|
notbid |
|- ( ( Cycles ` G ) = (/) -> ( -. f ( Cycles ` G ) p <-> -. f (/) p ) ) |
17 |
13 14 16
|
3syl |
|- ( V = (/) -> ( -. f ( Cycles ` G ) p <-> -. f (/) p ) ) |
18 |
2 17
|
mpbiri |
|- ( V = (/) -> -. f ( Cycles ` G ) p ) |
19 |
18
|
intnanrd |
|- ( V = (/) -> -. ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
20 |
19
|
nexdv |
|- ( V = (/) -> -. E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
21 |
20
|
nexdv |
|- ( V = (/) -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
22 |
|
isacycgr |
|- ( G e. W -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
23 |
22
|
biimpar |
|- ( ( G e. W /\ -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) -> G e. AcyclicGraph ) |
24 |
21 23
|
sylan2 |
|- ( ( G e. W /\ V = (/) ) -> G e. AcyclicGraph ) |