Metamath Proof Explorer


Theorem acycgr0v

Description: A null graph (with no vertices) is an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023)

Ref Expression
Hypothesis acycgr0v.1 V=VtxG
Assertion acycgr0v GWV=GAcyclicGraph

Proof

Step Hyp Ref Expression
1 acycgr0v.1 V=VtxG
2 br0 ¬fp
3 df-cycls Cycles=gVfp|fPathsgpp0=pf
4 3 relmptopab RelCyclesG
5 cycliswlk fCyclesGpfWalksGp
6 df-br fCyclesGpfpCyclesG
7 df-br fWalksGpfpWalksG
8 5 6 7 3imtr3i fpCyclesGfpWalksG
9 4 8 relssi CyclesGWalksG
10 1 eqeq1i V=VtxG=
11 g0wlk0 VtxG=WalksG=
12 10 11 sylbi V=WalksG=
13 9 12 sseqtrid V=CyclesG
14 ss0 CyclesGCyclesG=
15 breq CyclesG=fCyclesGpfp
16 15 notbid CyclesG=¬fCyclesGp¬fp
17 13 14 16 3syl V=¬fCyclesGp¬fp
18 2 17 mpbiri V=¬fCyclesGp
19 18 intnanrd V=¬fCyclesGpf
20 19 nexdv V=¬pfCyclesGpf
21 20 nexdv V=¬fpfCyclesGpf
22 isacycgr GWGAcyclicGraph¬fpfCyclesGpf
23 22 biimpar GW¬fpfCyclesGpfGAcyclicGraph
24 21 23 sylan2 GWV=GAcyclicGraph