Metamath Proof Explorer


Theorem acycgr1v

Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023)

Ref Expression
Hypothesis acycgrv.1 V = Vtx G
Assertion acycgr1v G UMGraph V = 1 G AcyclicGraph

Proof

Step Hyp Ref Expression
1 acycgrv.1 V = Vtx G
2 cyclispth f Cycles G p f Paths G p
3 1 pthhashvtx f Paths G p f V
4 2 3 syl f Cycles G p f V
5 4 adantr f Cycles G p V = 1 f V
6 breq2 V = 1 f V f 1
7 6 adantl f Cycles G p V = 1 f V f 1
8 5 7 mpbid f Cycles G p V = 1 f 1
9 8 3adant1 G UMGraph f Cycles G p V = 1 f 1
10 umgrn1cycl G UMGraph f Cycles G p f 1
11 10 3adant3 G UMGraph f Cycles G p V = 1 f 1
12 11 necomd G UMGraph f Cycles G p V = 1 1 f
13 cycliswlk f Cycles G p f Walks G p
14 wlkcl f Walks G p f 0
15 14 nn0red f Walks G p f
16 1red f Walks G p 1
17 15 16 ltlend f Walks G p f < 1 f 1 1 f
18 13 17 syl f Cycles G p f < 1 f 1 1 f
19 18 3ad2ant2 G UMGraph f Cycles G p V = 1 f < 1 f 1 1 f
20 9 12 19 mpbir2and G UMGraph f Cycles G p V = 1 f < 1
21 nn0lt10b f 0 f < 1 f = 0
22 13 14 21 3syl f Cycles G p f < 1 f = 0
23 22 3ad2ant2 G UMGraph f Cycles G p V = 1 f < 1 f = 0
24 20 23 mpbid G UMGraph f Cycles G p V = 1 f = 0
25 hasheq0 f V f = 0 f =
26 25 elv f = 0 f =
27 24 26 sylib G UMGraph f Cycles G p V = 1 f =
28 27 3com23 G UMGraph V = 1 f Cycles G p f =
29 28 3expia G UMGraph V = 1 f Cycles G p f =
30 29 alrimivv G UMGraph V = 1 f p f Cycles G p f =
31 isacycgr1 G UMGraph G AcyclicGraph f p f Cycles G p f =
32 31 adantr G UMGraph V = 1 G AcyclicGraph f p f Cycles G p f =
33 30 32 mpbird G UMGraph V = 1 G AcyclicGraph