Metamath Proof Explorer


Theorem acycgr1v

Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023)

Ref Expression
Hypothesis acycgrv.1 V=VtxG
Assertion acycgr1v GUMGraphV=1GAcyclicGraph

Proof

Step Hyp Ref Expression
1 acycgrv.1 V=VtxG
2 cyclispth fCyclesGpfPathsGp
3 1 pthhashvtx fPathsGpfV
4 2 3 syl fCyclesGpfV
5 4 adantr fCyclesGpV=1fV
6 breq2 V=1fVf1
7 6 adantl fCyclesGpV=1fVf1
8 5 7 mpbid fCyclesGpV=1f1
9 8 3adant1 GUMGraphfCyclesGpV=1f1
10 umgrn1cycl GUMGraphfCyclesGpf1
11 10 3adant3 GUMGraphfCyclesGpV=1f1
12 11 necomd GUMGraphfCyclesGpV=11f
13 cycliswlk fCyclesGpfWalksGp
14 wlkcl fWalksGpf0
15 14 nn0red fWalksGpf
16 1red fWalksGp1
17 15 16 ltlend fWalksGpf<1f11f
18 13 17 syl fCyclesGpf<1f11f
19 18 3ad2ant2 GUMGraphfCyclesGpV=1f<1f11f
20 9 12 19 mpbir2and GUMGraphfCyclesGpV=1f<1
21 nn0lt10b f0f<1f=0
22 13 14 21 3syl fCyclesGpf<1f=0
23 22 3ad2ant2 GUMGraphfCyclesGpV=1f<1f=0
24 20 23 mpbid GUMGraphfCyclesGpV=1f=0
25 hasheq0 fVf=0f=
26 25 elv f=0f=
27 24 26 sylib GUMGraphfCyclesGpV=1f=
28 27 3com23 GUMGraphV=1fCyclesGpf=
29 28 3expia GUMGraphV=1fCyclesGpf=
30 29 alrimivv GUMGraphV=1fpfCyclesGpf=
31 isacycgr1 GUMGraphGAcyclicGraphfpfCyclesGpf=
32 31 adantr GUMGraphV=1GAcyclicGraphfpfCyclesGpf=
33 30 32 mpbird GUMGraphV=1GAcyclicGraph