Step |
Hyp |
Ref |
Expression |
1 |
|
acycgrv.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cyclispth |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) |
3 |
1
|
pthhashvtx |
⊢ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑓 ) ≤ ( ♯ ‘ 𝑉 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑓 ) ≤ ( ♯ ‘ 𝑉 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑓 ) ≤ ( ♯ ‘ 𝑉 ) ) |
6 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ( ♯ ‘ 𝑓 ) ≤ ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑓 ) ≤ 1 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( ♯ ‘ 𝑓 ) ≤ ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑓 ) ≤ 1 ) ) |
8 |
5 7
|
mpbid |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑓 ) ≤ 1 ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑓 ) ≤ 1 ) |
10 |
|
umgrn1cycl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) → ( ♯ ‘ 𝑓 ) ≠ 1 ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑓 ) ≠ 1 ) |
12 |
11
|
necomd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 1 ≠ ( ♯ ‘ 𝑓 ) ) |
13 |
|
cycliswlk |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
14 |
|
wlkcl |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑓 ) ∈ ℕ0 ) |
15 |
14
|
nn0red |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑓 ) ∈ ℝ ) |
16 |
|
1red |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 1 ∈ ℝ ) |
17 |
15 16
|
ltlend |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) < 1 ↔ ( ( ♯ ‘ 𝑓 ) ≤ 1 ∧ 1 ≠ ( ♯ ‘ 𝑓 ) ) ) ) |
18 |
13 17
|
syl |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) < 1 ↔ ( ( ♯ ‘ 𝑓 ) ≤ 1 ∧ 1 ≠ ( ♯ ‘ 𝑓 ) ) ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( ♯ ‘ 𝑓 ) < 1 ↔ ( ( ♯ ‘ 𝑓 ) ≤ 1 ∧ 1 ≠ ( ♯ ‘ 𝑓 ) ) ) ) |
20 |
9 12 19
|
mpbir2and |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑓 ) < 1 ) |
21 |
|
nn0lt10b |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑓 ) < 1 ↔ ( ♯ ‘ 𝑓 ) = 0 ) ) |
22 |
13 14 21
|
3syl |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) < 1 ↔ ( ♯ ‘ 𝑓 ) = 0 ) ) |
23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ( ♯ ‘ 𝑓 ) < 1 ↔ ( ♯ ‘ 𝑓 ) = 0 ) ) |
24 |
20 23
|
mpbid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝑓 ) = 0 ) |
25 |
|
hasheq0 |
⊢ ( 𝑓 ∈ V → ( ( ♯ ‘ 𝑓 ) = 0 ↔ 𝑓 = ∅ ) ) |
26 |
25
|
elv |
⊢ ( ( ♯ ‘ 𝑓 ) = 0 ↔ 𝑓 = ∅ ) |
27 |
24 26
|
sylib |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝑓 = ∅ ) |
28 |
27
|
3com23 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) → 𝑓 = ∅ ) |
29 |
28
|
3expia |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 = ∅ ) ) |
30 |
29
|
alrimivv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ∀ 𝑓 ∀ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 = ∅ ) ) |
31 |
|
isacycgr1 |
⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ AcyclicGraph ↔ ∀ 𝑓 ∀ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 = ∅ ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( 𝐺 ∈ AcyclicGraph ↔ ∀ 𝑓 ∀ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 = ∅ ) ) ) |
33 |
30 32
|
mpbird |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐺 ∈ AcyclicGraph ) |