Step |
Hyp |
Ref |
Expression |
1 |
|
pthhashvtx.1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
hashfz0 |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) |
3 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
4 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
5 |
3 4
|
syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
6 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
7 |
|
npcan1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℂ → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
9 |
2 8
|
sylan9eqr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ♯ ‘ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
10 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
11 |
3 10
|
syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
12 |
11
|
ffnd |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
13 |
|
fzfi |
⊢ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ Fin |
14 |
|
resfnfinfin |
⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ Fin ) → ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Fin ) |
15 |
12 13 14
|
sylancl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Fin ) |
16 |
|
simpr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
17 |
|
fzssp1 |
⊢ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) |
18 |
8
|
oveq2d |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 0 ... ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
19 |
17 18
|
sseqtrid |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
20 |
11 19
|
fssresd |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑉 ) |
21 |
20
|
adantr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑉 ) |
22 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
23 |
22
|
a1i |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
24 |
20 23
|
fssresd |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑉 ) |
25 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
26 |
25
|
simp2bi |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
27 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
28 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
29 |
27 28
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
30 |
5 29
|
syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
31 |
30
|
reseq2d |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
32 |
|
resabs1 |
⊢ ( ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑃 ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
33 |
22 32
|
ax-mp |
⊢ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑃 ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
34 |
31 33
|
eqtr4di |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
35 |
34
|
cnveqd |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
36 |
35
|
funeqd |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ◡ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
37 |
26 36
|
mpbid |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → Fun ◡ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
38 |
|
df-f1 |
⊢ ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) –1-1→ 𝑉 ↔ ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑉 ∧ Fun ◡ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) |
39 |
24 37 38
|
sylanbrc |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) –1-1→ 𝑉 ) |
40 |
39
|
adantr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ↾ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) –1-1→ 𝑉 ) |
41 |
|
snsspr1 |
⊢ { 0 } ⊆ { 0 , ( ♯ ‘ 𝐹 ) } |
42 |
|
imass2 |
⊢ ( { 0 } ⊆ { 0 , ( ♯ ‘ 𝐹 ) } → ( 𝑃 “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) |
43 |
41 42
|
ax-mp |
⊢ ( 𝑃 “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) |
44 |
|
0elfz |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
45 |
44
|
snssd |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → { 0 } ⊆ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
46 |
|
resima2 |
⊢ ( { 0 } ⊆ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) = ( 𝑃 “ { 0 } ) ) |
47 |
|
sseq1 |
⊢ ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) = ( 𝑃 “ { 0 } ) → ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ↔ ( 𝑃 “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) ) |
48 |
45 46 47
|
3syl |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ↔ ( 𝑃 “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) ) |
49 |
43 48
|
mpbiri |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) |
50 |
|
resima2 |
⊢ ( ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑃 “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
51 |
22 50
|
ax-mp |
⊢ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑃 “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
52 |
30
|
imaeq2d |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
53 |
51 52
|
eqtr4id |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
54 |
53
|
ineq2d |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
55 |
25
|
simp3bi |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
56 |
54 55
|
eqtrd |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ∅ ) |
57 |
|
ssdisj |
⊢ ( ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) ⊆ ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ∅ ) → ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) ∩ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ∅ ) |
58 |
49 56 57
|
syl2anr |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ { 0 } ) ∩ ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) “ ( 1 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ∅ ) |
59 |
16 21 40 58
|
f1resfz0f1d |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) –1-1→ 𝑉 ) |
60 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
61 |
|
hashf1dmcdm |
⊢ ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Fin ∧ 𝑉 ∈ V ∧ ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) –1-1→ 𝑉 ) → ( ♯ ‘ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ≤ ( ♯ ‘ 𝑉 ) ) |
62 |
60 61
|
mp3an2 |
⊢ ( ( ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Fin ∧ ( 𝑃 ↾ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) –1-1→ 𝑉 ) → ( ♯ ‘ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ≤ ( ♯ ‘ 𝑉 ) ) |
63 |
15 59 62
|
syl2an2r |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ♯ ‘ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ≤ ( ♯ ‘ 𝑉 ) ) |
64 |
9 63
|
eqbrtrrd |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
65 |
|
0nn0m1nnn0 |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ¬ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) ) |
66 |
65
|
biimpri |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ¬ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) = 0 ) |
67 |
5 66
|
sylan |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ¬ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) = 0 ) |
68 |
|
hashge0 |
⊢ ( 𝑉 ∈ V → 0 ≤ ( ♯ ‘ 𝑉 ) ) |
69 |
60 68
|
ax-mp |
⊢ 0 ≤ ( ♯ ‘ 𝑉 ) |
70 |
67 69
|
eqbrtrdi |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ¬ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |
71 |
64 70
|
pm2.61dan |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝑉 ) ) |