Step |
Hyp |
Ref |
Expression |
1 |
|
f1resfz0f1d.1 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
2 |
|
f1resfz0f1d.2 |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ) |
3 |
|
f1resfz0f1d.3 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1→ 𝑉 ) |
4 |
|
f1resfz0f1d.4 |
⊢ ( 𝜑 → ( ( 𝐹 “ { 0 } ) ∩ ( 𝐹 “ ( 1 ... 𝐾 ) ) ) = ∅ ) |
5 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝐾 ) ⊆ ( 0 ... 𝐾 ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ⊆ ( 0 ... 𝐾 ) ) |
7 |
|
0elfz |
⊢ ( 𝐾 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐾 ) ) |
8 |
|
snssi |
⊢ ( 0 ∈ ( 0 ... 𝐾 ) → { 0 } ⊆ ( 0 ... 𝐾 ) ) |
9 |
1 7 8
|
3syl |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 ... 𝐾 ) ) |
10 |
2 9
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ { 0 } ) : { 0 } ⟶ 𝑉 ) |
11 |
|
eqidd |
⊢ ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) → 0 = 0 ) |
12 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
13 |
|
fveqeq2 |
⊢ ( 𝑥 = 0 → ( ( ( 𝐹 ↾ { 0 } ) ‘ 𝑥 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) ↔ ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 = 𝑦 ↔ 0 = 𝑦 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝐹 ↾ { 0 } ) ‘ 𝑥 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 0 = 𝑦 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 0 → ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑦 = 0 → ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) ↔ ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) ) ) |
18 |
|
eqeq2 |
⊢ ( 𝑦 = 0 → ( 0 = 𝑦 ↔ 0 = 0 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑦 = 0 → ( ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 0 = 𝑦 ) ↔ ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) → 0 = 0 ) ) ) |
20 |
15 19
|
2ralsng |
⊢ ( ( 0 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( ( 𝐹 ↾ { 0 } ) ‘ 𝑥 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) → 0 = 0 ) ) ) |
21 |
12 12 20
|
mp2an |
⊢ ( ∀ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( ( 𝐹 ↾ { 0 } ) ‘ 𝑥 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 0 ) → 0 = 0 ) ) |
22 |
11 21
|
mpbir |
⊢ ∀ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( ( 𝐹 ↾ { 0 } ) ‘ 𝑥 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
23 |
|
dff13 |
⊢ ( ( 𝐹 ↾ { 0 } ) : { 0 } –1-1→ 𝑉 ↔ ( ( 𝐹 ↾ { 0 } ) : { 0 } ⟶ 𝑉 ∧ ∀ 𝑥 ∈ { 0 } ∀ 𝑦 ∈ { 0 } ( ( ( 𝐹 ↾ { 0 } ) ‘ 𝑥 ) = ( ( 𝐹 ↾ { 0 } ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
24 |
10 22 23
|
sylanblrc |
⊢ ( 𝜑 → ( 𝐹 ↾ { 0 } ) : { 0 } –1-1→ 𝑉 ) |
25 |
|
uncom |
⊢ ( ( 1 ... 𝐾 ) ∪ { 0 } ) = ( { 0 } ∪ ( 1 ... 𝐾 ) ) |
26 |
|
fz0sn0fz1 |
⊢ ( 𝐾 ∈ ℕ0 → ( 0 ... 𝐾 ) = ( { 0 } ∪ ( 1 ... 𝐾 ) ) ) |
27 |
1 26
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝐾 ) = ( { 0 } ∪ ( 1 ... 𝐾 ) ) ) |
28 |
25 27
|
eqtr4id |
⊢ ( 𝜑 → ( ( 1 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ) |
29 |
|
0nelfz1 |
⊢ 0 ∉ ( 1 ... 𝐾 ) |
30 |
29
|
neli |
⊢ ¬ 0 ∈ ( 1 ... 𝐾 ) |
31 |
|
disjsn |
⊢ ( ( ( 1 ... 𝐾 ) ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ( 1 ... 𝐾 ) ) |
32 |
30 31
|
mpbir |
⊢ ( ( 1 ... 𝐾 ) ∩ { 0 } ) = ∅ |
33 |
|
uneqdifeq |
⊢ ( ( ( 1 ... 𝐾 ) ⊆ ( 0 ... 𝐾 ) ∧ ( ( 1 ... 𝐾 ) ∩ { 0 } ) = ∅ ) → ( ( ( 1 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ↔ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) = { 0 } ) ) |
34 |
5 32 33
|
mp2an |
⊢ ( ( ( 1 ... 𝐾 ) ∪ { 0 } ) = ( 0 ... 𝐾 ) ↔ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) = { 0 } ) |
35 |
28 34
|
sylib |
⊢ ( 𝜑 → ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) = { 0 } ) |
36 |
35
|
eqcomd |
⊢ ( 𝜑 → { 0 } = ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) |
37 |
36
|
reseq2d |
⊢ ( 𝜑 → ( 𝐹 ↾ { 0 } ) = ( 𝐹 ↾ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) ) |
38 |
|
eqidd |
⊢ ( 𝜑 → 𝑉 = 𝑉 ) |
39 |
37 36 38
|
f1eq123d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ { 0 } ) : { 0 } –1-1→ 𝑉 ↔ ( 𝐹 ↾ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) : ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) –1-1→ 𝑉 ) ) |
40 |
24 39
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) : ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) –1-1→ 𝑉 ) |
41 |
36
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ { 0 } ) = ( 𝐹 “ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) ) |
42 |
41
|
ineq2d |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 1 ... 𝐾 ) ) ∩ ( 𝐹 “ { 0 } ) ) = ( ( 𝐹 “ ( 1 ... 𝐾 ) ) ∩ ( 𝐹 “ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) ) ) |
43 |
|
incom |
⊢ ( ( 𝐹 “ { 0 } ) ∩ ( 𝐹 “ ( 1 ... 𝐾 ) ) ) = ( ( 𝐹 “ ( 1 ... 𝐾 ) ) ∩ ( 𝐹 “ { 0 } ) ) |
44 |
43 4
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 1 ... 𝐾 ) ) ∩ ( 𝐹 “ { 0 } ) ) = ∅ ) |
45 |
42 44
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 1 ... 𝐾 ) ) ∩ ( 𝐹 “ ( ( 0 ... 𝐾 ) ∖ ( 1 ... 𝐾 ) ) ) ) = ∅ ) |
46 |
6 2 3 40 45
|
f1resrcmplf1d |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐾 ) –1-1→ 𝑉 ) |