Step |
Hyp |
Ref |
Expression |
1 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ Fin ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 ∈ Fin ) |
3 |
|
hashen |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
4 |
3
|
biimp3a |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 ≈ 𝐵 ) |
5 |
|
pm3.2 |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) ) ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) ) ) |
7 |
|
fisseneq |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
9 |
8
|
expcom |
⊢ ( 𝐴 ≈ 𝐵 → ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 = 𝐵 ) ) |
10 |
4 6 9
|
sylsyld |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ) |
11 |
10
|
3expb |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) ) → ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ) |
12 |
11
|
expcom |
⊢ ( ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ) ) |
13 |
12
|
com23 |
⊢ ( ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∈ Fin → 𝐴 = 𝐵 ) ) ) |
14 |
13
|
3impia |
⊢ ( ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∈ Fin → 𝐴 = 𝐵 ) ) |
15 |
14
|
3com23 |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → ( 𝐴 ∈ Fin → 𝐴 = 𝐵 ) ) |
16 |
2 15
|
mpd |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) → 𝐴 = 𝐵 ) |