Metamath Proof Explorer


Theorem fisshasheq

Description: A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023)

Ref Expression
Assertion fisshasheq B Fin A B A = B A = B

Proof

Step Hyp Ref Expression
1 ssfi B Fin A B A Fin
2 1 3adant3 B Fin A B A = B A Fin
3 hashen A Fin B Fin A = B A B
4 3 biimp3a A Fin B Fin A = B A B
5 pm3.2 B Fin A B B Fin A B
6 5 3ad2ant2 A Fin B Fin A = B A B B Fin A B
7 fisseneq B Fin A B A B A = B
8 7 3expa B Fin A B A B A = B
9 8 expcom A B B Fin A B A = B
10 4 6 9 sylsyld A Fin B Fin A = B A B A = B
11 10 3expb A Fin B Fin A = B A B A = B
12 11 expcom B Fin A = B A Fin A B A = B
13 12 com23 B Fin A = B A B A Fin A = B
14 13 3impia B Fin A = B A B A Fin A = B
15 14 3com23 B Fin A B A = B A Fin A = B
16 2 15 mpd B Fin A B A = B A = B