Metamath Proof Explorer


Theorem fisshasheq

Description: A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023)

Ref Expression
Assertion fisshasheq BFinABA=BA=B

Proof

Step Hyp Ref Expression
1 ssfi BFinABAFin
2 1 3adant3 BFinABA=BAFin
3 hashen AFinBFinA=BAB
4 3 biimp3a AFinBFinA=BAB
5 pm3.2 BFinABBFinAB
6 5 3ad2ant2 AFinBFinA=BABBFinAB
7 fisseneq BFinABABA=B
8 7 3expa BFinABABA=B
9 8 expcom ABBFinABA=B
10 4 6 9 sylsyld AFinBFinA=BABA=B
11 10 3expb AFinBFinA=BABA=B
12 11 expcom BFinA=BAFinABA=B
13 12 com23 BFinA=BABAFinA=B
14 13 3impia BFinA=BABAFinA=B
15 14 3com23 BFinABA=BAFinA=B
16 2 15 mpd BFinABA=BA=B