Step |
Hyp |
Ref |
Expression |
1 |
|
ssfi |
|- ( ( B e. Fin /\ A C_ B ) -> A e. Fin ) |
2 |
1
|
3adant3 |
|- ( ( B e. Fin /\ A C_ B /\ ( # ` A ) = ( # ` B ) ) -> A e. Fin ) |
3 |
|
hashen |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
4 |
3
|
biimp3a |
|- ( ( A e. Fin /\ B e. Fin /\ ( # ` A ) = ( # ` B ) ) -> A ~~ B ) |
5 |
|
pm3.2 |
|- ( B e. Fin -> ( A C_ B -> ( B e. Fin /\ A C_ B ) ) ) |
6 |
5
|
3ad2ant2 |
|- ( ( A e. Fin /\ B e. Fin /\ ( # ` A ) = ( # ` B ) ) -> ( A C_ B -> ( B e. Fin /\ A C_ B ) ) ) |
7 |
|
fisseneq |
|- ( ( B e. Fin /\ A C_ B /\ A ~~ B ) -> A = B ) |
8 |
7
|
3expa |
|- ( ( ( B e. Fin /\ A C_ B ) /\ A ~~ B ) -> A = B ) |
9 |
8
|
expcom |
|- ( A ~~ B -> ( ( B e. Fin /\ A C_ B ) -> A = B ) ) |
10 |
4 6 9
|
sylsyld |
|- ( ( A e. Fin /\ B e. Fin /\ ( # ` A ) = ( # ` B ) ) -> ( A C_ B -> A = B ) ) |
11 |
10
|
3expb |
|- ( ( A e. Fin /\ ( B e. Fin /\ ( # ` A ) = ( # ` B ) ) ) -> ( A C_ B -> A = B ) ) |
12 |
11
|
expcom |
|- ( ( B e. Fin /\ ( # ` A ) = ( # ` B ) ) -> ( A e. Fin -> ( A C_ B -> A = B ) ) ) |
13 |
12
|
com23 |
|- ( ( B e. Fin /\ ( # ` A ) = ( # ` B ) ) -> ( A C_ B -> ( A e. Fin -> A = B ) ) ) |
14 |
13
|
3impia |
|- ( ( B e. Fin /\ ( # ` A ) = ( # ` B ) /\ A C_ B ) -> ( A e. Fin -> A = B ) ) |
15 |
14
|
3com23 |
|- ( ( B e. Fin /\ A C_ B /\ ( # ` A ) = ( # ` B ) ) -> ( A e. Fin -> A = B ) ) |
16 |
2 15
|
mpd |
|- ( ( B e. Fin /\ A C_ B /\ ( # ` A ) = ( # ` B ) ) -> A = B ) |