Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( ( # ` A ) = ( # ` B ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` A ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` B ) ) ) |
2 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
3 |
2
|
hashginv |
|- ( A e. Fin -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` A ) ) = ( card ` A ) ) |
4 |
2
|
hashginv |
|- ( B e. Fin -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` B ) ) = ( card ` B ) ) |
5 |
3 4
|
eqeqan12d |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` A ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` B ) ) <-> ( card ` A ) = ( card ` B ) ) ) |
6 |
1 5
|
syl5ib |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) -> ( card ` A ) = ( card ` B ) ) ) |
7 |
|
fveq2 |
|- ( ( card ` A ) = ( card ` B ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) |
8 |
2
|
hashgval |
|- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
9 |
2
|
hashgval |
|- ( B e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) = ( # ` B ) ) |
10 |
8 9
|
eqeqan12d |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) <-> ( # ` A ) = ( # ` B ) ) ) |
11 |
7 10
|
syl5ib |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) = ( card ` B ) -> ( # ` A ) = ( # ` B ) ) ) |
12 |
6 11
|
impbid |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> ( card ` A ) = ( card ` B ) ) ) |
13 |
|
finnum |
|- ( A e. Fin -> A e. dom card ) |
14 |
|
finnum |
|- ( B e. Fin -> B e. dom card ) |
15 |
|
carden2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |
16 |
13 14 15
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |
17 |
12 16
|
bitrd |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |