| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> A ~~ B )  | 
						
						
							| 2 | 
							
								
							 | 
							enfii | 
							 |-  ( ( B e. Fin /\ A ~~ B ) -> A e. Fin )  | 
						
						
							| 3 | 
							
								2
							 | 
							ancoms | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> A e. Fin )  | 
						
						
							| 4 | 
							
								
							 | 
							hashen | 
							 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylancom | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							mpbird | 
							 |-  ( ( A ~~ B /\ B e. Fin ) -> ( # ` A ) = ( # ` B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							relen | 
							 |-  Rel ~~  | 
						
						
							| 8 | 
							
								7
							 | 
							brrelex1i | 
							 |-  ( A ~~ B -> A e. _V )  | 
						
						
							| 9 | 
							
								
							 | 
							enfi | 
							 |-  ( A ~~ B -> ( A e. Fin <-> B e. Fin ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							notbid | 
							 |-  ( A ~~ B -> ( -. A e. Fin <-> -. B e. Fin ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpar | 
							 |-  ( ( A ~~ B /\ -. B e. Fin ) -> -. A e. Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							hashinf | 
							 |-  ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo )  | 
						
						
							| 13 | 
							
								8 11 12
							 | 
							syl2an2r | 
							 |-  ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` A ) = +oo )  | 
						
						
							| 14 | 
							
								7
							 | 
							brrelex2i | 
							 |-  ( A ~~ B -> B e. _V )  | 
						
						
							| 15 | 
							
								
							 | 
							hashinf | 
							 |-  ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylan | 
							 |-  ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` B ) = +oo )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							eqtr4d | 
							 |-  ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` A ) = ( # ` B ) )  | 
						
						
							| 18 | 
							
								6 17
							 | 
							pm2.61dan | 
							 |-  ( A ~~ B -> ( # ` A ) = ( # ` B ) )  |