| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							carddom2 | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							carddom2 | 
							 |-  ( ( B e. dom card /\ A e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) <-> B ~<_ A ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ancoms | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) <-> B ~<_ A ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							anbi12d | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` B ) C_ ( card ` A ) ) <-> ( A ~<_ B /\ B ~<_ A ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqss | 
							 |-  ( ( card ` A ) = ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` B ) C_ ( card ` A ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							bicomi | 
							 |-  ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` B ) C_ ( card ` A ) ) <-> ( card ` A ) = ( card ` B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							sbthb | 
							 |-  ( ( A ~<_ B /\ B ~<_ A ) <-> A ~~ B )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							3bitr3g | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) )  |