| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							carddom2 | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							carden2 | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							necon3abid | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) =/= ( card ` B ) <-> -. A ~~ B ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							anbi12d | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) <-> ( A ~<_ B /\ -. A ~~ B ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							cardon | 
							 |-  ( card ` A ) e. On  | 
						
						
							| 6 | 
							
								
							 | 
							cardon | 
							 |-  ( card ` B ) e. On  | 
						
						
							| 7 | 
							
								
							 | 
							onelpss | 
							 |-  ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) e. ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							mp2an | 
							 |-  ( ( card ` A ) e. ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							brsdom | 
							 |-  ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) )  | 
						
						
							| 10 | 
							
								4 8 9
							 | 
							3bitr4g | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) )  |