| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hashgval.1 | 
							 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )  | 
						
						
							| 2 | 
							
								
							 | 
							ficardom | 
							 |-  ( A e. Fin -> ( card ` A ) e. _om )  | 
						
						
							| 3 | 
							
								1
							 | 
							hashgval | 
							 |-  ( A e. Fin -> ( G ` ( card ` A ) ) = ( # ` A ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							hashgf1o | 
							 |-  G : _om -1-1-onto-> NN0  | 
						
						
							| 5 | 
							
								
							 | 
							f1ocnvfv | 
							 |-  ( ( G : _om -1-1-onto-> NN0 /\ ( card ` A ) e. _om ) -> ( ( G ` ( card ` A ) ) = ( # ` A ) -> ( `' G ` ( # ` A ) ) = ( card ` A ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpan | 
							 |-  ( ( card ` A ) e. _om -> ( ( G ` ( card ` A ) ) = ( # ` A ) -> ( `' G ` ( # ` A ) ) = ( card ` A ) ) )  | 
						
						
							| 7 | 
							
								2 3 6
							 | 
							sylc | 
							 |-  ( A e. Fin -> ( `' G ` ( # ` A ) ) = ( card ` A ) )  |