| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hashgval.1 | 
							 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )  | 
						
						
							| 2 | 
							
								
							 | 
							resundir | 
							 |-  ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` Fin ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) ) | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							hashkf | 
							 |-  ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0  | 
						
						
							| 6 | 
							
								
							 | 
							ffn | 
							 |-  ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							fnresdm | 
							 |-  ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							mp2b | 
							 |-  ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card )  | 
						
						
							| 9 | 
							
								
							 | 
							disjdifr | 
							 |-  ( ( _V \ Fin ) i^i Fin ) = (/)  | 
						
						
							| 10 | 
							
								
							 | 
							pnfex | 
							 |-  +oo e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							fconst | 
							 |-  ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } | 
						
						
							| 12 | 
							
								
							 | 
							ffn | 
							 |-  ( ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } -> ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) ) | 
						
						
							| 13 | 
							
								
							 | 
							fnresdisj | 
							 |-  ( ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) -> ( ( ( _V \ Fin ) i^i Fin ) = (/) <-> ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) = (/) ) ) | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							mp2b | 
							 |-  ( ( ( _V \ Fin ) i^i Fin ) = (/) <-> ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) = (/) ) | 
						
						
							| 15 | 
							
								9 14
							 | 
							mpbi | 
							 |-  ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) = (/) | 
						
						
							| 16 | 
							
								8 15
							 | 
							uneq12i | 
							 |-  ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. (/) ) | 
						
						
							| 17 | 
							
								
							 | 
							un0 | 
							 |-  ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. (/) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtri | 
							 |-  ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) | 
						
						
							| 19 | 
							
								2 18
							 | 
							eqtri | 
							 |-  ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` Fin ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) | 
						
						
							| 20 | 
							
								
							 | 
							df-hash | 
							 |-  # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) | 
						
						
							| 21 | 
							
								20
							 | 
							reseq1i | 
							 |-  ( # |` Fin ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` Fin ) | 
						
						
							| 22 | 
							
								1
							 | 
							coeq1i | 
							 |-  ( G o. card ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card )  | 
						
						
							| 23 | 
							
								19 21 22
							 | 
							3eqtr4i | 
							 |-  ( # |` Fin ) = ( G o. card )  | 
						
						
							| 24 | 
							
								23
							 | 
							fveq1i | 
							 |-  ( ( # |` Fin ) ` A ) = ( ( G o. card ) ` A )  | 
						
						
							| 25 | 
							
								
							 | 
							cardf2 | 
							 |-  card : { x | E. y e. On y ~~ x } --> On | 
						
						
							| 26 | 
							
								
							 | 
							ffun | 
							 |-  ( card : { x | E. y e. On y ~~ x } --> On -> Fun card ) | 
						
						
							| 27 | 
							
								25 26
							 | 
							ax-mp | 
							 |-  Fun card  | 
						
						
							| 28 | 
							
								
							 | 
							finnum | 
							 |-  ( A e. Fin -> A e. dom card )  | 
						
						
							| 29 | 
							
								
							 | 
							fvco | 
							 |-  ( ( Fun card /\ A e. dom card ) -> ( ( G o. card ) ` A ) = ( G ` ( card ` A ) ) )  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							sylancr | 
							 |-  ( A e. Fin -> ( ( G o. card ) ` A ) = ( G ` ( card ` A ) ) )  | 
						
						
							| 31 | 
							
								24 30
							 | 
							eqtrid | 
							 |-  ( A e. Fin -> ( ( # |` Fin ) ` A ) = ( G ` ( card ` A ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fvres | 
							 |-  ( A e. Fin -> ( ( # |` Fin ) ` A ) = ( # ` A ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							eqtr3d | 
							 |-  ( A e. Fin -> ( G ` ( card ` A ) ) = ( # ` A ) )  |