| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hashgval.1 | 
							⊢ 𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  | 
						
						
							| 2 | 
							
								
							 | 
							resundir | 
							⊢ ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) )  ↾  Fin )  =  ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ↾  Fin )  ∪  ( ( ( V  ∖  Fin )  ×  { +∞ } )  ↾  Fin ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							hashkf | 
							⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) : Fin ⟶ ℕ0  | 
						
						
							| 6 | 
							
								
							 | 
							ffn | 
							⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) : Fin ⟶ ℕ0  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  Fn  Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							fnresdm | 
							⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  Fn  Fin  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ↾  Fin )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							mp2b | 
							⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ↾  Fin )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  | 
						
						
							| 9 | 
							
								
							 | 
							disjdifr | 
							⊢ ( ( V  ∖  Fin )  ∩  Fin )  =  ∅  | 
						
						
							| 10 | 
							
								
							 | 
							pnfex | 
							⊢ +∞  ∈  V  | 
						
						
							| 11 | 
							
								10
							 | 
							fconst | 
							⊢ ( ( V  ∖  Fin )  ×  { +∞ } ) : ( V  ∖  Fin ) ⟶ { +∞ }  | 
						
						
							| 12 | 
							
								
							 | 
							ffn | 
							⊢ ( ( ( V  ∖  Fin )  ×  { +∞ } ) : ( V  ∖  Fin ) ⟶ { +∞ }  →  ( ( V  ∖  Fin )  ×  { +∞ } )  Fn  ( V  ∖  Fin ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fnresdisj | 
							⊢ ( ( ( V  ∖  Fin )  ×  { +∞ } )  Fn  ( V  ∖  Fin )  →  ( ( ( V  ∖  Fin )  ∩  Fin )  =  ∅  ↔  ( ( ( V  ∖  Fin )  ×  { +∞ } )  ↾  Fin )  =  ∅ ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							mp2b | 
							⊢ ( ( ( V  ∖  Fin )  ∩  Fin )  =  ∅  ↔  ( ( ( V  ∖  Fin )  ×  { +∞ } )  ↾  Fin )  =  ∅ )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							mpbi | 
							⊢ ( ( ( V  ∖  Fin )  ×  { +∞ } )  ↾  Fin )  =  ∅  | 
						
						
							| 16 | 
							
								8 15
							 | 
							uneq12i | 
							⊢ ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ↾  Fin )  ∪  ( ( ( V  ∖  Fin )  ×  { +∞ } )  ↾  Fin ) )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							un0 | 
							⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ∅ )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtri | 
							⊢ ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ↾  Fin )  ∪  ( ( ( V  ∖  Fin )  ×  { +∞ } )  ↾  Fin ) )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  | 
						
						
							| 19 | 
							
								2 18
							 | 
							eqtri | 
							⊢ ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) )  ↾  Fin )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  | 
						
						
							| 20 | 
							
								
							 | 
							df-hash | 
							⊢ ♯  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							reseq1i | 
							⊢ ( ♯  ↾  Fin )  =  ( ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  ∪  ( ( V  ∖  Fin )  ×  { +∞ } ) )  ↾  Fin )  | 
						
						
							| 22 | 
							
								1
							 | 
							coeq1i | 
							⊢ ( 𝐺  ∘  card )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  ∘  card )  | 
						
						
							| 23 | 
							
								19 21 22
							 | 
							3eqtr4i | 
							⊢ ( ♯  ↾  Fin )  =  ( 𝐺  ∘  card )  | 
						
						
							| 24 | 
							
								23
							 | 
							fveq1i | 
							⊢ ( ( ♯  ↾  Fin ) ‘ 𝐴 )  =  ( ( 𝐺  ∘  card ) ‘ 𝐴 )  | 
						
						
							| 25 | 
							
								
							 | 
							cardf2 | 
							⊢ card : { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } ⟶ On  | 
						
						
							| 26 | 
							
								
							 | 
							ffun | 
							⊢ ( card : { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } ⟶ On  →  Fun  card )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							ax-mp | 
							⊢ Fun  card  | 
						
						
							| 28 | 
							
								
							 | 
							finnum | 
							⊢ ( 𝐴  ∈  Fin  →  𝐴  ∈  dom  card )  | 
						
						
							| 29 | 
							
								
							 | 
							fvco | 
							⊢ ( ( Fun  card  ∧  𝐴  ∈  dom  card )  →  ( ( 𝐺  ∘  card ) ‘ 𝐴 )  =  ( 𝐺 ‘ ( card ‘ 𝐴 ) ) )  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐺  ∘  card ) ‘ 𝐴 )  =  ( 𝐺 ‘ ( card ‘ 𝐴 ) ) )  | 
						
						
							| 31 | 
							
								24 30
							 | 
							eqtrid | 
							⊢ ( 𝐴  ∈  Fin  →  ( ( ♯  ↾  Fin ) ‘ 𝐴 )  =  ( 𝐺 ‘ ( card ‘ 𝐴 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝐴  ∈  Fin  →  ( ( ♯  ↾  Fin ) ‘ 𝐴 )  =  ( ♯ ‘ 𝐴 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							eqtr3d | 
							⊢ ( 𝐴  ∈  Fin  →  ( 𝐺 ‘ ( card ‘ 𝐴 ) )  =  ( ♯ ‘ 𝐴 ) )  |