| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-card | ⊢ card  =  ( 𝑥  ∈  V  ↦  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑥 } ) | 
						
							| 2 | 1 | funmpt2 | ⊢ Fun  card | 
						
							| 3 |  | rabab | ⊢ { 𝑥  ∈  V  ∣  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑥 }  ∈  V }  =  { 𝑥  ∣  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑥 }  ∈  V } | 
						
							| 4 | 1 | dmmpt | ⊢ dom  card  =  { 𝑥  ∈  V  ∣  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑥 }  ∈  V } | 
						
							| 5 |  | intexrab | ⊢ ( ∃ 𝑦  ∈  On 𝑦  ≈  𝑥  ↔  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑥 }  ∈  V ) | 
						
							| 6 | 5 | abbii | ⊢ { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  =  { 𝑥  ∣  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑥 }  ∈  V } | 
						
							| 7 | 3 4 6 | 3eqtr4i | ⊢ dom  card  =  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } | 
						
							| 8 |  | df-fn | ⊢ ( card  Fn  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ↔  ( Fun  card  ∧  dom  card  =  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } ) ) | 
						
							| 9 | 2 7 8 | mpbir2an | ⊢ card  Fn  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } ) | 
						
							| 11 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 12 | 10 11 | eqeltrrdi | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ∈  V ) | 
						
							| 13 |  | intex | ⊢ ( { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ≠  ∅  ↔  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ∈  V ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ≠  ∅ ) | 
						
							| 15 |  | rabn0 | ⊢ ( { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ≠  ∅  ↔  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 ) | 
						
							| 17 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 18 |  | breq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  ≈  𝑥  ↔  𝑦  ≈  𝑧 ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈  On 𝑦  ≈  𝑥  ↔  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 ) ) | 
						
							| 20 | 17 19 | elab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ↔  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 ) | 
						
							| 21 | 16 20 | sylibr | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } ) | 
						
							| 22 |  | ssrab2 | ⊢ { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ⊆  On | 
						
							| 23 |  | oninton | ⊢ ( ( { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ⊆  On  ∧  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ≠  ∅ )  →  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ∈  On ) | 
						
							| 24 | 22 14 23 | sylancr | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 }  ∈  On ) | 
						
							| 25 | 10 24 | eqeltrd | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  𝑤  ∈  On ) | 
						
							| 26 | 21 25 | jca | ⊢ ( ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  →  ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ∧  𝑤  ∈  On ) ) | 
						
							| 27 | 26 | ssopab2i | ⊢ { 〈 𝑧 ,  𝑤 〉  ∣  ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } ) }  ⊆  { 〈 𝑧 ,  𝑤 〉  ∣  ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ∧  𝑤  ∈  On ) } | 
						
							| 28 |  | df-card | ⊢ card  =  ( 𝑧  ∈  V  ↦  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } ) | 
						
							| 29 |  | df-mpt | ⊢ ( 𝑧  ∈  V  ↦  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } )  =  { 〈 𝑧 ,  𝑤 〉  ∣  ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } ) } | 
						
							| 30 | 28 29 | eqtri | ⊢ card  =  { 〈 𝑧 ,  𝑤 〉  ∣  ( 𝑧  ∈  V  ∧  𝑤  =  ∩  { 𝑦  ∈  On  ∣  𝑦  ≈  𝑧 } ) } | 
						
							| 31 |  | df-xp | ⊢ ( { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ×  On )  =  { 〈 𝑧 ,  𝑤 〉  ∣  ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ∧  𝑤  ∈  On ) } | 
						
							| 32 | 27 30 31 | 3sstr4i | ⊢ card  ⊆  ( { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ×  On ) | 
						
							| 33 |  | dff2 | ⊢ ( card : { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } ⟶ On  ↔  ( card  Fn  { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ∧  card  ⊆  ( { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 }  ×  On ) ) ) | 
						
							| 34 | 9 32 33 | mpbir2an | ⊢ card : { 𝑥  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑥 } ⟶ On |