| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-card |  |-  card = ( x e. _V |-> |^| { y e. On | y ~~ x } ) | 
						
							| 2 | 1 | funmpt2 |  |-  Fun card | 
						
							| 3 |  | rabab |  |-  { x e. _V | |^| { y e. On | y ~~ x } e. _V } = { x | |^| { y e. On | y ~~ x } e. _V } | 
						
							| 4 | 1 | dmmpt |  |-  dom card = { x e. _V | |^| { y e. On | y ~~ x } e. _V } | 
						
							| 5 |  | intexrab |  |-  ( E. y e. On y ~~ x <-> |^| { y e. On | y ~~ x } e. _V ) | 
						
							| 6 | 5 | abbii |  |-  { x | E. y e. On y ~~ x } = { x | |^| { y e. On | y ~~ x } e. _V } | 
						
							| 7 | 3 4 6 | 3eqtr4i |  |-  dom card = { x | E. y e. On y ~~ x } | 
						
							| 8 |  | df-fn |  |-  ( card Fn { x | E. y e. On y ~~ x } <-> ( Fun card /\ dom card = { x | E. y e. On y ~~ x } ) ) | 
						
							| 9 | 2 7 8 | mpbir2an |  |-  card Fn { x | E. y e. On y ~~ x } | 
						
							| 10 |  | simpr |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> w = |^| { y e. On | y ~~ z } ) | 
						
							| 11 |  | vex |  |-  w e. _V | 
						
							| 12 | 10 11 | eqeltrrdi |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> |^| { y e. On | y ~~ z } e. _V ) | 
						
							| 13 |  | intex |  |-  ( { y e. On | y ~~ z } =/= (/) <-> |^| { y e. On | y ~~ z } e. _V ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> { y e. On | y ~~ z } =/= (/) ) | 
						
							| 15 |  | rabn0 |  |-  ( { y e. On | y ~~ z } =/= (/) <-> E. y e. On y ~~ z ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> E. y e. On y ~~ z ) | 
						
							| 17 |  | vex |  |-  z e. _V | 
						
							| 18 |  | breq2 |  |-  ( x = z -> ( y ~~ x <-> y ~~ z ) ) | 
						
							| 19 | 18 | rexbidv |  |-  ( x = z -> ( E. y e. On y ~~ x <-> E. y e. On y ~~ z ) ) | 
						
							| 20 | 17 19 | elab |  |-  ( z e. { x | E. y e. On y ~~ x } <-> E. y e. On y ~~ z ) | 
						
							| 21 | 16 20 | sylibr |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> z e. { x | E. y e. On y ~~ x } ) | 
						
							| 22 |  | ssrab2 |  |-  { y e. On | y ~~ z } C_ On | 
						
							| 23 |  | oninton |  |-  ( ( { y e. On | y ~~ z } C_ On /\ { y e. On | y ~~ z } =/= (/) ) -> |^| { y e. On | y ~~ z } e. On ) | 
						
							| 24 | 22 14 23 | sylancr |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> |^| { y e. On | y ~~ z } e. On ) | 
						
							| 25 | 10 24 | eqeltrd |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> w e. On ) | 
						
							| 26 | 21 25 | jca |  |-  ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) ) | 
						
							| 27 | 26 | ssopab2i |  |-  { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } C_ { <. z , w >. | ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) } | 
						
							| 28 |  | df-card |  |-  card = ( z e. _V |-> |^| { y e. On | y ~~ z } ) | 
						
							| 29 |  | df-mpt |  |-  ( z e. _V |-> |^| { y e. On | y ~~ z } ) = { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } | 
						
							| 30 | 28 29 | eqtri |  |-  card = { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } | 
						
							| 31 |  | df-xp |  |-  ( { x | E. y e. On y ~~ x } X. On ) = { <. z , w >. | ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) } | 
						
							| 32 | 27 30 31 | 3sstr4i |  |-  card C_ ( { x | E. y e. On y ~~ x } X. On ) | 
						
							| 33 |  | dff2 |  |-  ( card : { x | E. y e. On y ~~ x } --> On <-> ( card Fn { x | E. y e. On y ~~ x } /\ card C_ ( { x | E. y e. On y ~~ x } X. On ) ) ) | 
						
							| 34 | 9 32 33 | mpbir2an |  |-  card : { x | E. y e. On y ~~ x } --> On |