| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hashgval.1 | 
							⊢ 𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  | 
						
						
							| 2 | 
							
								
							 | 
							ficardom | 
							⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ∈  ω )  | 
						
						
							| 3 | 
							
								1
							 | 
							hashgval | 
							⊢ ( 𝐴  ∈  Fin  →  ( 𝐺 ‘ ( card ‘ 𝐴 ) )  =  ( ♯ ‘ 𝐴 ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							hashgf1o | 
							⊢ 𝐺 : ω –1-1-onto→ ℕ0  | 
						
						
							| 5 | 
							
								
							 | 
							f1ocnvfv | 
							⊢ ( ( 𝐺 : ω –1-1-onto→ ℕ0  ∧  ( card ‘ 𝐴 )  ∈  ω )  →  ( ( 𝐺 ‘ ( card ‘ 𝐴 ) )  =  ( ♯ ‘ 𝐴 )  →  ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  =  ( card ‘ 𝐴 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpan | 
							⊢ ( ( card ‘ 𝐴 )  ∈  ω  →  ( ( 𝐺 ‘ ( card ‘ 𝐴 ) )  =  ( ♯ ‘ 𝐴 )  →  ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  =  ( card ‘ 𝐴 ) ) )  | 
						
						
							| 7 | 
							
								2 3 6
							 | 
							sylc | 
							⊢ ( 𝐴  ∈  Fin  →  ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  =  ( card ‘ 𝐴 ) )  |