| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relres | 
							 |-  Rel ( F |` B )  | 
						
						
							| 2 | 
							
								
							 | 
							reldm0 | 
							 |-  ( Rel ( F |` B ) -> ( ( F |` B ) = (/) <-> dom ( F |` B ) = (/) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							 |-  ( ( F |` B ) = (/) <-> dom ( F |` B ) = (/) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmres | 
							 |-  dom ( F |` B ) = ( B i^i dom F )  | 
						
						
							| 5 | 
							
								
							 | 
							incom | 
							 |-  ( B i^i dom F ) = ( dom F i^i B )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqtri | 
							 |-  dom ( F |` B ) = ( dom F i^i B )  | 
						
						
							| 7 | 
							
								
							 | 
							fndm | 
							 |-  ( F Fn A -> dom F = A )  | 
						
						
							| 8 | 
							
								7
							 | 
							ineq1d | 
							 |-  ( F Fn A -> ( dom F i^i B ) = ( A i^i B ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqtrid | 
							 |-  ( F Fn A -> dom ( F |` B ) = ( A i^i B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq1d | 
							 |-  ( F Fn A -> ( dom ( F |` B ) = (/) <-> ( A i^i B ) = (/) ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							bitr2id | 
							 |-  ( F Fn A -> ( ( A i^i B ) = (/) <-> ( F |` B ) = (/) ) )  |