Metamath Proof Explorer


Theorem hashgf1o

Description: G maps _om one-to-one onto NN0 . (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypothesis fzennn.1
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )
Assertion hashgf1o
|- G : _om -1-1-onto-> NN0

Proof

Step Hyp Ref Expression
1 fzennn.1
 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )
2 0z
 |-  0 e. ZZ
3 2 1 om2uzf1oi
 |-  G : _om -1-1-onto-> ( ZZ>= ` 0 )
4 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
5 f1oeq3
 |-  ( NN0 = ( ZZ>= ` 0 ) -> ( G : _om -1-1-onto-> NN0 <-> G : _om -1-1-onto-> ( ZZ>= ` 0 ) ) )
6 4 5 ax-mp
 |-  ( G : _om -1-1-onto-> NN0 <-> G : _om -1-1-onto-> ( ZZ>= ` 0 ) )
7 3 6 mpbir
 |-  G : _om -1-1-onto-> NN0