Description: G maps _om one-to-one onto NN0 . (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 13-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fzennn.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
Assertion | hashgf1o | |- G : _om -1-1-onto-> NN0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzennn.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
2 | 0z | |- 0 e. ZZ |
|
3 | 2 1 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` 0 ) |
4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
5 | f1oeq3 | |- ( NN0 = ( ZZ>= ` 0 ) -> ( G : _om -1-1-onto-> NN0 <-> G : _om -1-1-onto-> ( ZZ>= ` 0 ) ) ) |
|
6 | 4 5 | ax-mp | |- ( G : _om -1-1-onto-> NN0 <-> G : _om -1-1-onto-> ( ZZ>= ` 0 ) ) |
7 | 3 6 | mpbir | |- G : _om -1-1-onto-> NN0 |