Step |
Hyp |
Ref |
Expression |
1 |
|
hashfun |
|- ( F e. Fin -> ( Fun F <-> ( # ` F ) = ( # ` dom F ) ) ) |
2 |
1
|
biimpd |
|- ( F e. Fin -> ( Fun F -> ( # ` F ) = ( # ` dom F ) ) ) |
3 |
2
|
adantld |
|- ( F e. Fin -> ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) ) |
4 |
|
hashinf |
|- ( ( F e. V /\ -. F e. Fin ) -> ( # ` F ) = +oo ) |
5 |
4
|
3adant2 |
|- ( ( F e. V /\ Fun F /\ -. F e. Fin ) -> ( # ` F ) = +oo ) |
6 |
|
fundmfibi |
|- ( Fun F -> ( F e. Fin <-> dom F e. Fin ) ) |
7 |
6
|
notbid |
|- ( Fun F -> ( -. F e. Fin <-> -. dom F e. Fin ) ) |
8 |
7
|
adantl |
|- ( ( F e. V /\ Fun F ) -> ( -. F e. Fin <-> -. dom F e. Fin ) ) |
9 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
10 |
|
hashinf |
|- ( ( dom F e. _V /\ -. dom F e. Fin ) -> ( # ` dom F ) = +oo ) |
11 |
9 10
|
sylan |
|- ( ( F e. V /\ -. dom F e. Fin ) -> ( # ` dom F ) = +oo ) |
12 |
11
|
ex |
|- ( F e. V -> ( -. dom F e. Fin -> ( # ` dom F ) = +oo ) ) |
13 |
12
|
adantr |
|- ( ( F e. V /\ Fun F ) -> ( -. dom F e. Fin -> ( # ` dom F ) = +oo ) ) |
14 |
8 13
|
sylbid |
|- ( ( F e. V /\ Fun F ) -> ( -. F e. Fin -> ( # ` dom F ) = +oo ) ) |
15 |
14
|
3impia |
|- ( ( F e. V /\ Fun F /\ -. F e. Fin ) -> ( # ` dom F ) = +oo ) |
16 |
5 15
|
eqtr4d |
|- ( ( F e. V /\ Fun F /\ -. F e. Fin ) -> ( # ` F ) = ( # ` dom F ) ) |
17 |
16
|
3comr |
|- ( ( -. F e. Fin /\ F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |
18 |
17
|
3expib |
|- ( -. F e. Fin -> ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) ) |
19 |
3 18
|
pm2.61i |
|- ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |