Metamath Proof Explorer


Theorem fundmfibi

Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion fundmfibi
|- ( Fun F -> ( F e. Fin <-> dom F e. Fin ) )

Proof

Step Hyp Ref Expression
1 dmfi
 |-  ( F e. Fin -> dom F e. Fin )
2 funfn
 |-  ( Fun F <-> F Fn dom F )
3 fnfi
 |-  ( ( F Fn dom F /\ dom F e. Fin ) -> F e. Fin )
4 2 3 sylanb
 |-  ( ( Fun F /\ dom F e. Fin ) -> F e. Fin )
5 4 ex
 |-  ( Fun F -> ( dom F e. Fin -> F e. Fin ) )
6 1 5 impbid2
 |-  ( Fun F -> ( F e. Fin <-> dom F e. Fin ) )