| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
| 2 |
1
|
adantr |
|- ( ( F Fn A /\ B e. Fin ) -> Rel F ) |
| 3 |
|
resindm |
|- ( Rel F -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
| 4 |
3
|
eqcomd |
|- ( Rel F -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
| 5 |
2 4
|
syl |
|- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
| 6 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 7 |
6
|
funfnd |
|- ( F Fn A -> F Fn dom F ) |
| 8 |
|
fnresin2 |
|- ( F Fn dom F -> ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) ) |
| 9 |
|
infi |
|- ( B e. Fin -> ( B i^i dom F ) e. Fin ) |
| 10 |
|
fnfi |
|- ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ ( B i^i dom F ) e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
| 11 |
9 10
|
sylan2 |
|- ( ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
| 12 |
11
|
ex |
|- ( ( F |` ( B i^i dom F ) ) Fn ( B i^i dom F ) -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) |
| 13 |
7 8 12
|
3syl |
|- ( F Fn A -> ( B e. Fin -> ( F |` ( B i^i dom F ) ) e. Fin ) ) |
| 14 |
13
|
imp |
|- ( ( F Fn A /\ B e. Fin ) -> ( F |` ( B i^i dom F ) ) e. Fin ) |
| 15 |
5 14
|
eqeltrd |
|- ( ( F Fn A /\ B e. Fin ) -> ( F |` B ) e. Fin ) |