Metamath Proof Explorer


Theorem resfnfinfin

Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018)

Ref Expression
Assertion resfnfinfin F Fn A B Fin F B Fin

Proof

Step Hyp Ref Expression
1 fnrel F Fn A Rel F
2 1 adantr F Fn A B Fin Rel F
3 resindm Rel F F B dom F = F B
4 3 eqcomd Rel F F B = F B dom F
5 2 4 syl F Fn A B Fin F B = F B dom F
6 fnfun F Fn A Fun F
7 6 funfnd F Fn A F Fn dom F
8 fnresin2 F Fn dom F F B dom F Fn B dom F
9 infi B Fin B dom F Fin
10 fnfi F B dom F Fn B dom F B dom F Fin F B dom F Fin
11 9 10 sylan2 F B dom F Fn B dom F B Fin F B dom F Fin
12 11 ex F B dom F Fn B dom F B Fin F B dom F Fin
13 7 8 12 3syl F Fn A B Fin F B dom F Fin
14 13 imp F Fn A B Fin F B dom F Fin
15 5 14 eqeltrd F Fn A B Fin F B Fin