Metamath Proof Explorer


Theorem residfi

Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion residfi IAFinAFin

Proof

Step Hyp Ref Expression
1 dmresi domIA=A
2 dmfi IAFindomIAFin
3 1 2 eqeltrrid IAFinAFin
4 funi FunI
5 funfn FunIIFndomI
6 4 5 mpbi IFndomI
7 resfnfinfin IFndomIAFinIAFin
8 6 7 mpan AFinIAFin
9 3 8 impbii IAFinAFin