Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | residfi | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresi | ⊢ dom ( I ↾ 𝐴 ) = 𝐴 | |
| 2 | dmfi | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin → dom ( I ↾ 𝐴 ) ∈ Fin ) | |
| 3 | 1 2 | eqeltrrid | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin → 𝐴 ∈ Fin ) |
| 4 | funi | ⊢ Fun I | |
| 5 | funfn | ⊢ ( Fun I ↔ I Fn dom I ) | |
| 6 | 4 5 | mpbi | ⊢ I Fn dom I |
| 7 | resfnfinfin | ⊢ ( ( I Fn dom I ∧ 𝐴 ∈ Fin ) → ( I ↾ 𝐴 ) ∈ Fin ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ Fin → ( I ↾ 𝐴 ) ∈ Fin ) |
| 9 | 3 8 | impbii | ⊢ ( ( I ↾ 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) |