Metamath Proof Explorer


Theorem fundmfibi

Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion fundmfibi ( Fun 𝐹 → ( 𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 dmfi ( 𝐹 ∈ Fin → dom 𝐹 ∈ Fin )
2 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
3 fnfi ( ( 𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ Fin ) → 𝐹 ∈ Fin )
4 2 3 sylanb ( ( Fun 𝐹 ∧ dom 𝐹 ∈ Fin ) → 𝐹 ∈ Fin )
5 4 ex ( Fun 𝐹 → ( dom 𝐹 ∈ Fin → 𝐹 ∈ Fin ) )
6 1 5 impbid2 ( Fun 𝐹 → ( 𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin ) )