| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1fun |
|- ( F : A -1-1-> B -> Fun F ) |
| 2 |
|
hashfundm |
|- ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` dom F ) ) |
| 4 |
|
f1dm |
|- ( F : A -1-1-> B -> dom F = A ) |
| 5 |
4
|
adantl |
|- ( ( F e. V /\ F : A -1-1-> B ) -> dom F = A ) |
| 6 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
| 7 |
6
|
adantr |
|- ( ( F e. V /\ F : A -1-1-> B ) -> dom F e. _V ) |
| 8 |
5 7
|
eqeltrrd |
|- ( ( F e. V /\ F : A -1-1-> B ) -> A e. _V ) |
| 9 |
|
hashf1rn |
|- ( ( A e. _V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |
| 10 |
8 9
|
sylancom |
|- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |
| 11 |
5
|
fveq2d |
|- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` dom F ) = ( # ` A ) ) |
| 12 |
3 10 11
|
3eqtr3rd |
|- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` A ) = ( # ` ran F ) ) |