| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1fun |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun 𝐹 ) |
| 2 |
|
hashfundm |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) |
| 4 |
|
f1dm |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → dom 𝐹 = 𝐴 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → dom 𝐹 = 𝐴 ) |
| 6 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → dom 𝐹 ∈ V ) |
| 8 |
5 7
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ V ) |
| 9 |
|
hashf1rn |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ran 𝐹 ) ) |
| 10 |
8 9
|
sylancom |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ran 𝐹 ) ) |
| 11 |
5
|
fveq2d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ dom 𝐹 ) = ( ♯ ‘ 𝐴 ) ) |
| 12 |
3 10 11
|
3eqtr3rd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝐹 ) ) |