| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pthsfval | ⊢ ( Paths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) } | 
						
							| 2 |  | 3anass | ⊢ ( ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ )  ↔  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) ) | 
						
							| 3 | 2 | opabbii | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } | 
						
							| 4 | 1 3 | eqtri | ⊢ ( Paths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  𝑝  =  𝑃 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ 𝑓 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 1 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 1 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 9 | 5 8 | reseq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  =  ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 10 | 9 | cnveqd | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  =  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 11 | 10 | funeqd | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ↔  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 12 | 6 | preq2d | ⊢ ( 𝑓  =  𝐹  →  { 0 ,  ( ♯ ‘ 𝑓 ) }  =  { 0 ,  ( ♯ ‘ 𝐹 ) } ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  { 0 ,  ( ♯ ‘ 𝑓 ) }  =  { 0 ,  ( ♯ ‘ 𝐹 ) } ) | 
						
							| 14 | 5 13 | imaeq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  =  ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } ) ) | 
						
							| 15 | 5 8 | imaeq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  =  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 16 | 14 15 | ineq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅  ↔  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) | 
						
							| 18 | 11 17 | anbi12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ )  ↔  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) ) | 
						
							| 19 |  | reltrls | ⊢ Rel  ( Trails ‘ 𝐺 ) | 
						
							| 20 | 4 18 19 | brfvopabrbr | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) ) | 
						
							| 21 |  | 3anass | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) ) | 
						
							| 22 | 20 21 | bitr4i | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) |