| Step | Hyp | Ref | Expression | 
						
							| 1 |  | biidd | ⊢ ( 𝑔  =  𝐺  →  ( ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ )  ↔  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) ) | 
						
							| 2 |  | df-pths | ⊢ Paths  =  ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) } ) | 
						
							| 3 |  | 3anass | ⊢ ( ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ )  ↔  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) ) | 
						
							| 4 | 3 | opabbii | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } | 
						
							| 5 | 4 | mpteq2i | ⊢ ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) } )  =  ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } ) | 
						
							| 6 | 2 5 | eqtri | ⊢ Paths  =  ( 𝑔  ∈  V  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } ) | 
						
							| 7 | 1 6 | fvmptopab | ⊢ ( Paths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } | 
						
							| 8 |  | 3anass | ⊢ ( ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ )  ↔  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) ) | 
						
							| 9 | 8 | opabbii | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  ( Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) ) } | 
						
							| 10 | 7 9 | eqtr4i | ⊢ ( Paths ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝  ∧  Fun  ◡ ( 𝑝  ↾  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) )  ∧  ( ( 𝑝  “  { 0 ,  ( ♯ ‘ 𝑓 ) } )  ∩  ( 𝑝  “  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) )  =  ∅ ) } |